
The odsfile package:
accessing of the opendocument spreadsheet from

LATEX documents∗

Michal Hoftich (michal.h21@gmail.com)

October 31, 2025

Contents
1 Introduction 1

2 Usage 2
2.1 Character escaping . 6
2.2 Saving the generated table to a file 6
2.3 Debugging . 6

3 Templates 7

4 Adding data 7

5 Loading and saving of the ods file 8

6 Lua library 8

7 Changes 10

1 Introduction
This is LuaLATEX package and lua library for working with opendocument spread-
sheet (ods) documents from Open/Libre Office Calc. Their contents can be read
as LATEX tables, can be pass to macros, you can also add new data to existing
spreadsheets.

The ods format consist of number of xml files packed in the zip file. This
package uses LuaTEX’s zip library, LuaXML library1 and lua scripting to read
xml content from this archive, which means that it is not possible to use this
package with pdfLATEX or X ELATEX. On the other side, odsfile.lua library can
be used from PlainTEX, ConTEXt or pure lua scripts.

∗Version 0.10, last revisited 2025-10-31.
1Pure lua library for working with xml files, it is available form CTAN or https://github.com/

michal-h21/LuaXML

1

michal.h21@gmail.com
https://github.com/michal-h21/LuaXML
https://github.com/michal-h21/LuaXML

Creation of this package was motivated by question2 on site http://tex.
stackexchange.com/. Development version of the package can be found at
https://github.com/michal-h21/odsfile, all contributions and comments
are welcome.

2 Usage
You can load odsfile classically with
\usepackage{odsfile}

There are macros:

• \includespread

• \includespread*

• \OdsNl

• \OdsLastNl

• \tabletemplate

• \loadodsfile

• \savespreadsheet

• AddRow environment

Main command is \includespread and it’s starred variant \includespread*.\includespread
It’s syntax is:
\includespread[〈key-value list〉]

Options are:

file Filename of file to be loaded. You should specify this only on first use of
\includespread.

sheet Name of sheet to be loaded. If it’s not specified on first use of
\includespread, then first sheet from the file is loaded. The sheet remains
selected until another use of sheet.

First 2,2
Second 3,1

1\begin{tabular}{l l}
2\includespread[file=pokus.

ods,sheet=List2]
3\end{tabular}

range Selects range from table to be inserted. Range is specified in format
similar to spreadsheet processors, like a2:c4, selecting cells starting at
first column, second row and ending and third column, fourth row. Other
variant of supported ranges are named ranges, which can be saved in the
ods file. You can specify multiple ranges to be included, separated by
comma, but in this case the range specification must be surrounded by
braces: {a1:b1,a3:b3}.

2http://tex.stackexchange.com/questions/60378/insert-libreoffice-table-as-input

2

http://tex.stackexchange.com/
http://tex.stackexchange.com/
https://github.com/michal-h21/odsfile
http://tex.stackexchange.com/questions/60378/insert-libreoffice-table-as-input

Hello 1 3
World 2 4
AA 3 5

1\begin{tabular}{lll}
2\includespread[sheet=List1,

range=a2:c4]
3\end{tabular}

You can omit some or both of the numbers:

Label Position Count
Hello 1 3
World 2 4
AA 3 5

1\begin{tabular}{lll}
2\includespread[range=a:c4]
3\end{tabular}

Label Position
Hello 1
World 2
AA 3
BB 4
CC 5
\textbf{bold} 6

1\begin{tabular}{ll}
2\includespread[range=a:b]
3\end{tabular}

1 3
2 4
3 5
4 6
5 7
6 8

1\begin{tabular}{ll}
2\includespread[range=b2:c]
3\end{tabular}

Position Count
2 4
3 5
4 6
5 7
6 8

1\begin{tabular}{ll}
2\includespread[range={b1:c1,

b3:c}]
3\end{tabular}

AA 3 5
BB 4 6
CC 5 7

1\begin{tabular}{lll}
2\includespread[range=

newrangetest]
3\end{tabular}

columns Column heading specification. It can be either head, top, or comma
separated list of values.

top Use as headers first line from the table.

Position Count
2 4
3 5
4 6

1\begin{tabular}{ll}
2\includespread[range=b3:c

5,columns=top]
3\end{tabular}

3

Note that if you include whole table, first line is included twice:

Label Position Count
Label Position Count
Hello 1 3
World 2 4
AA 3 5
BB 4 6
CC 5 7
\textbf{bold} 6 8

1\begin{tabular}{lll}
2\includespread[columns=

top]
3\end{tabular}

in this case you can use
head use first row from selection as headings.

Label Position Count
Hello 1 3
World 2 4

1\begin{tabular}{lll}
2\includespread[columns=

head,range=a:c3]
3\end{tabular}

manually specified list If column headings are not specified in the file,
you can set them manually.

title amount
First 2,2
Second 3,1

1\begin{tabular}{ll}
2\includespread[columns={

title,amount},sheet=
List2]

3\end{tabular}

columnbreak Command inserted in manual linebreaks in cells. Default
value is \linebreak

rowseparator Rows are normally separated with newlines, if you really want,
you can separate them with hlines.
Possible values:

tableline (default) Inserts \\ character
hline Inserts \\ \\hline

newline Inserts blank line
user specified separator useful in conjunction with rowtemplate (p.

5), for example if you want to include sheets as plaintext or input for
plotting functions.

Label Position
Hello 1
World 2
AA 3
BB 4

1\begin{tabular}{lll}
2\includespread[columns=top,

sheet=List1,
rowseparator=hline,
range=a2:b5]

3\end{tabular}

newline Code that will be inserted instead of \\ between rows. Default value
is \OdsNl.

4

lastnewline Code inserted after the last row. Default value is \OdsLastNl.

template Templates are simple mechanism to insert whole tabular environ-
ment with column specification. All columns are aligned to the left, if
you want to do more advanced stuff with column specifications, you must
enter them manually as in all previous examples.

Label Position Count
World 2 4
AA 3 5
BB 4 6
CC 5 7
\textbf{bold} 6 8

1\includespread[columns=top,
template=booktabs,range
=a3]

For more info about templates, see next section 3

coltypes When using template, column types are inferred automatically. If
that doesn’t work well in your case, you can specify them manually with
coltypes option.

Label Position Count
Hello 1 3
World 2 4
AA 3 5
BB 4 6
CC 5 7
\textbf{bold} 6 8

1 \includespread[columns=
head, template=
booktabs, coltypes=
lrr]

rowtemplate Enables to convert tabular data to something different than
LATEX tables. Syntax for rowtemplates is similar to the table templates,
variables are inserted with -{number}, where number is the position of
the cell from beginning of the selection.

Hello:1, World:2, AA:3, BB:4, CC:5,
\textbf{bold}:6

1\includespread[range=a2:b,
rowseparator={,\ },
rowtemplate={\textit
{-{1}}:-{2}}]

celltemplate This template is applied to every cell in the included table.

Label Position Count
Hello 1 3
World 2 4
AA 3 5
BB 4 6
CC 5 7
\textbf{bold} 6 8

1 \begin{tabular}{lll}
2 \includespread[range=a

1:c1,celltemplate
={\textit{-{value
}}}]

3 \includespread[range=a
2:c]

4 \end{tabular}

5

multicoltemplate supports merged cells. Default template uses left aligned
\multicolumn command

Hello
world
table with

merged

1 \begin{tabular}{lll}
2 \includespread[sheet=

Sheet3,
multicoltemplate={\
multicolumn{-{count}}{
r}{-{value}}}]

3 \end{tabular}

2.1 Character escaping
To prevent compilation errors, odsfile escapes characters that have special
meaning in LATEX, for example backslashes or dollar characters. In some cases,
you may want to execute the TEX code that is saved in the spreadsheet. In that
case, use the escape option:

escape Set the value to false to ignore special characters in the cell data.

The following example prints the left cell in the last row in table in bold,
because the original spreadsheet contains the \textbf{bold} command.

Label Position Count
Hello 1 3
World 2 4
AA 3 5
BB 4 6
CC 5 7
bold 6 8

1\begin{tabular}{lll}
2\includespread[sheet=List1,

columns=head,escape=false]
3\end{tabular}

2.2 Saving the generated table to a file
Use the save option to save the generated table to a file instead of including it
directly into the document.

There should be no table listed

1There should be no table
listed

2\includespread[sheet=List1,
columns=head,escape=false,
save=save-test.tex,debug=
true]

2.3 Debugging
You can print the generated table to the terminal output of LATEX using the
debug option. Possible values are true and false.

6

3 Templates
If you don’t want to specify tabular environment by hand, you can use simple
templating mechanism to insert tabular environment by hand.

Templates are defined with macro\tabletemplate
\tabletemplate{〈template name〉}{〈template code〉}
there is default template:

\tabletemplate{default}{-{colheading}-{rowsep}-{content}}

Code -{variable name} inserts one of the following variables:

coltypes This is code to be inserted in \begin{tabular}{coltypes}. The p
column specifier is used for each column, where cell with manual line
break occurs, l is used otherwise.

colheading Column headings.

rowsep It inserts row separator defined with rowsepartor key of \includespread.
It is used in default style to delimit column headings and table contents.

content Tabular data.

More powerful template for the booktabs package

\tabletemplate{booktabs}{%
\begin{tabular}{-{coltypes}}
\toprule
-{colheading}
\midrule
-{content}
\bottomrule
\end{tabular}
}

4 Adding data
There is simple interface for adding new rows to the spreadsheet.

AddRow[〈row number〉] environment for adding new row to the current sheet.AddRow
Optional argument [〈row number〉] specifies where it should be inserted, if
blank, it will be inserted at end.

Inside AddRow, you can use

• \AddString{〈text〉}{〈position〉}

• \AddNumber{〈number〉}{〈position〉}

Position specifies cell, where data should be added, if you leave it blank, it will
be laced next to the previous one.

7

Label Position Count
Hello 1 3
World 2 4
AA 3 5
BB 4 6
CC 5 7
\textbf{bold} 6 8

Label Position Count
Hello 1 3
third row 22
World 2 4
AA 3 5
BB 4 6
CC 5 7
\textbf{bold} 6 8
last row

1\includespread[columns=head,
template=booktabs]

2\begin{AddRow}
3 \AddString{last row}{}
4\end{AddRow}
5\begin{AddRow}[3]
6 \AddString{third row}{}
7 \AddNumber{22}{2}
8\end{AddRow}
9\includespread[columns=head,

template=booktabs]

5 Loading and saving of the ods file
You can explicitly load ods file with \loadodsfile[〈key val list〉]{〈filename〉}.\loadodsfile
This can be useful, if you only want to write some data to the file, otherwise it
is better to use \includespread.

For saving spreadsheets modified with AddRow, you can use \savespreadsheet.\savespreadsheet
This command uses call to external zip utility, so you should have installed
it and you have to call LuaLATEX with lualatex --shell-escape filename.
LuaLATEX also must have write permissions for accessing the ods file. This
command creates file content.xml in the current directory, so if externall call
fails, you can run

zip -r filename.ods content.xml

by hand.

6 Lua library
The lua library uses luazip library integrated to LuaTEX and LuaXML3, pure
lua library for working with XML files.

To use library in your code, you can use:

require("odsfile")

Function odsfile.load(filename) returns odsfile object, with loadContent()
method, which returns lua table representing content.xml file. We can select
sheet from the spreadsheet with odsfile.getTable(xmlobject,sheet_name).
If we omit sheet_name, first sheet from spreadsheet is selected.

3https://github.com/michal-h21/LuaXML

8

https://github.com/michal-h21/LuaXML

Data from sheet can be read with odsfile.tableValues(sheet, x1, y1, x2, y2).
x1 - y2 are range to be selected, they can be nil, in which case whole rows
and cells are selected. For converting of standard range expressions of form
a1:b2 to this representation, function odsfile.getRange(range) can be used.

Example usage – file odsexample.lua
require "odsfile"

-- Helper function to print structure of the table
function printable(tb, level)
level = level or 1
local spaces = string.rep(' ', level*2)
for k,v in pairs(tb) do

if type(v) ~= "table" then
print(spaces .. k..'='..v)

else
print(spaces .. k)
level = level + 1
printable(v, level)

end
end

end

local ods = odsfile.load("filename.ods")
local f, e = ods:loadContent()

-- Get First sheet from the table
body= odsfile.getTable(f)
-- Print structure of the range a4:b5
printable(odsfile.tableValues(body,odsfile.getRange("a4:b5")))

Run the example with texlua odsexample.lua from the command line, you
should get following result:
1

1
value=AA
attr

office:value-type=string
2

value=3
attr
office:value-type=float
office:value=3

2
1

value=BB
attr
office:value-type=string

2
value=4
attr

office:value-type=float
office:value=4

9

To convert this structure to LATEX tabular code, you can use following func-
tion:

function tableToTabular(values)
local rowValues = function(row)

local t={}
for _,column in pairs(row) do table.insert(t,column.value) end
return t

end
content = {}
for i,row in pairs(values) do

table.insert(content,table.concat(rowValues(row)," & "))
end
return table.concat(content,"\\\\\n")

end
-- Now use it with objects from previous example
print(tableToTabular(odsfile.tableValues(body)))

This example yields

Label & Position & Count\\
Hello & 1 & 3\\
World & 2 & 4\\
AA & 3 & 5\\
BB & 4 & 6\\
CC & 5 & 7

7 Changes
v0.10 • define Lua functions locally, to prevent pollution of global names-

pace4

v0.9 • added the save and debug options
• added support for multiple ranges in the range option
• added newline and lastnewline options

v0.8 • added the escape option for enabling or disabling of the character
escaping

• fixed handling of merged cells in ranges
• fixed escaping of backslashes
• fixed row insertion

v0.7 • Fixed character escaping. Unescaped “%,#,$, _ and &” characters
will be escaped to prevent compilation errors. Characters that are
already escaped in the ODS file will be left untouched.5

• Added support for LuaTeX -recorder command line option
• Added celltemplate option

4Thanks to Udi Fogiel
5Thanks to Wybo Dekker

10

• Fixed named range handling6

v0.6 • Fixed bug in handling of rows with only one cell7

• Added support for named ranges
• Fixed text:s handling. Beware that using multiple formatting styles

in one cell may result in discarding whole cell, or wrong order. This
is caused by underlying LuaXML library and it is likely to remain.

v0.5 • Fixed bug: cell attributes weren’t saved
• Added support for merged cells
• Added multicoltemplate option

v0.4 • Fixed bugs in loading sheets without ranges
• Fixed bugs in behaviour of empty cells8

• Fixed bug in row counting9

• Added support for children element in column paragraphs
• Added cell value escaping

v0.3 • Added support for multiline cells
• Improved automatic column types generation
• Added new options, coltypes and columnbreak

v0.2 • LuaXML is now distributed as separate library, so other projects
can use it.

• New AddRow environment for adding data to the ods file
• New command \savespreadsheet for saving ods file
• Bug fixes: corrected loading of the sheets, corrected behaviour of

blank cell

v0.1 First version

6Thanks to Angelforest
7Thanks to Ulrike Fisher
8Thanks to TrippleWhy
9Thanks to yamsu

11

https://github.com/TripleWhy
https://github.com/yamsu

	Contents
	1 Introduction
	2 Usage
	2.1 Character escaping
	2.2 Saving the generated table to a file
	2.3 Debugging

	3 Templates
	4 Adding data
	5 Loading and saving of the ods file
	6 Lua library
	7 Changes

