
KKluaverb Package Documentation

Kosei Kawaguchi a.k.a. KKTeX

Version 2.1.2 (2026/01/27)

1

目次

1 Outline・・ 3
2 Acknowledgements / Credit・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3
3 Dependencies ・・・ 3
4 Basic Usage of Lua-enhanced \verb・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3
4.1 Fundamental Behavior ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3
4.2 In Verbatim Environments・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4
4.3 Optional Usage・・ 4
4.4 Behavior in TOC, Index etc.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
5 Basic Usage of Lua-enhanced lstlisting・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
5.1 Fundamental Behavior ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
5.1.1 \KKvLNChange ・・ 6
5.2 Additional Description ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
5.2.1 Note#1 ・・ 7
5.2.2 Note#2 ・・ 7

6 Color Mapping・・・ 8
6.1 Basic Behavior ・・ 8
6.1.1 word_boundary, word_components options ・・・・・・・・・・・・・・・・・・・・・・ 9
6.1.2 comment_char, comment_color, escape_char options ・・・・・・・・・・・・・・・ 9
6.1.3 delimiters, forced_token options・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9
6.2 Example ・・ 9
7 Text Mapping・・ 12

2

1 Outline

The KKluaverb is a LaTeX package which provides a Lua-enhanced \verb command, \KKverb.
It can be used in the table of contents, index, underline commands (e.g., \underLineKK provided
by the luwa-ul package), tblr environment and so on.

2 Acknowledgements / Credit

In devoloping this package, I made use of an algorithm which is used in “bxrawstr” (by Takayuki
YATO)1）.

3 Dependencies

This package internally uses the following packages:

• luatexbase, luacode
• pgfkeys
• xcolor

4 Basic Usage of Lua-enhanced \verb

4.1 Fundamental Behavior

As mentioned in the “Outline” section, this package mainly provides enhanced \verb command.
The usage is not much different from the normal one.

Input

1 \KKverb|\def\TEST{Test Text.}|

Output

\def\TEST{Test Text.}

In the argument of the command, any linebreaks and blank lines are ignored. However, every
space are preserved and rendered exactly as it appears.

1） package: https://gist.github.com/zr-tex8r/c7901658a866adfcd3cd66b6dfa86997
article: https://zrbabbler.hatenablog.com/entry/20181222/1545495849

3

https://gist.github.com/zr-tex8r/c7901658a866adfcd3cd66b6dfa86997
https://zrbabbler.hatenablog.com/entry/20181222/1545495849

4.2 In Verbatim Environments

When this package is loaded, the Lua-scanning which enables \KKverb to detokenize its argument
is activated. However, when \KKverb used in verbatim environments such as “lstlistings” and
“tcblisting”, the argument cannot be decoded properly. In such cases, you should use \KKvScanOff
which deactivates the scanning process used internally in KKverb.lua. Of course, \KKvScanOn re-
activates the process.

4.3 Optional Usage

In addition to the main function of \KKverb, some optional funcions are provided.
\KKvOpChange can change font and color of the output of \KKverb. Also, it can activate or
deactivate the scanner. The usage is as follows:

Input

1 {\KKvOpChange{color=blue, font=\gtfamily, enabled=true}%
2 \KKverb|\def\TEST{Test Text.}|}

Output

\def\TEST{Test Text.}

表 1: \KKvOpChange

Key Default Value Description

font \ttfamily Sets the font for the verbatim text.

color black Sets the text color.

enabled true Activates or deactivates the scanning engine.

Additionally, the enabled option functions the same as \KKvScanOn and \KKvScanOff.
Also, you can change delimiters by using \KKvSetDelims as follows in order to change the de-
limiters of the command:

Input

1 \KKvSetDelims{[<}{>]}

2

3 Changed the delimiters: \KKverb[<\def\foo\s>]

4

Output

Changed the delimiters: \def\foo\s

By default, the delimiters are set as ”|”. So you can reset them by this:

Input

1 \KKvSetDelims{|}{|}

4.4 Behavior in TOC, Index etc.

One of the strong points of \KKverb is that it can be used in table of contents, index, and footnotes
and more. While the traditional \verb command always causes an error in such contexts, \KKverb
does not. This is achieved through the following logic, using the TOC as an example.
When the TeX system generates the TOC, it produces an auxiliary file with the extension .toc.
In this file, entry data is typically stored in an expanded state.
However, this package requires the raw text data to be passed unexpanded. This is because
the text must be intercepted and processed by process_input_buffer before TeX’s tokenizer con-
verts it into tokens. To resolve this, I implemented a mechanism that automatically prepends the
\unexpanded command to the starter flag when writing to auxiliary files:

1 % In TOC

2 \noexpand\KKlvStart*<encoded tests>\noexpand\KKlvEnd*%

Then, the content of the .toc file is processed by TeX in the usual way subsequently, because
the \unexpanded is no longer present.

5 Basic Usage of Lua-enhanced lstlisting

5.1 Fundamental Behavior

\KKcodeS and \KKcodeE provide an environment-like output which is very close to the
lstlisting. The usage is very simple. The code between \KKcodeS and \KKcodeE is rendered as
raw texts.
If you want to attach linenumbers to the left of the each line, \KKcodeS+ will meet the request.
Please note that you do not need to type \KKcodeE+. \KKcodeS+ and \KKcodeE is the proper pair.

Input

1 \KKcodeS+

2 % A sample command

5

3 \long\def\myprog#1{%
4 \ifx#1\empty

5 \relax

6 \else

7 \message{Processing...}%
8 #1

9 \fi

10 }

11 \KKcodeE

Output

1 % A sample command

2 \long\def\myprog#1{%

3 \ifx#1\empty

4 \relax

5 \else

6 \message{Processing...}%

7 #1

8 \fi

9 }

When you use this Lua-based environment, please keep the following points in mind:

•All indents and spaces are displayed.
• Line breaks and blank lines are rendered exactly as they appear in the source.

5.1.1 \KKvLNChange

This command can change the style of the linenumbers.

表 2: \KKvLNChange

Key Default Value Description

font \ttfamily Sets the font for the linenumbers.

color black!80 Sets the color of the linenumbers.

size \small Set the size of the linenumbers.

start 1 Set the start number.

style 0 Set the style.

6

Please note that you do not have to use style key when you use this package in a normal way. This
is because style1 and style2 are completely covered by \KKcodeS/E or \KKcodeS+/E environment.
The following example illustrates this point.

Input

1 {\KKvLNChange{style=1}

2 \KKverb|

3 % contents
4 |}

5

6 \KKcodeS

7 % contents
8 \KKcodeE

The two above produce identical output. To summarize,

style=0 This is the normal usage of the \KKverb.
style=1 This style corresponds to \KKcodeS/E environment.
style=2 This style corresponds to \KKcodeS+/E environment.

5.2 Additional Description

Some corner cases should be payed attention.

5.2.1 Note#1
You cannot use \KKcodeS and \KKcodeE in the argument of \KKverb command. When the scanner
is activated, \KKcodeS forcibly starts the encoding system, even it is wrapped by \KKverb. If you
need to display \KKcodeS and \KKcodeE as they are, deactivate the scanner by \KKvScanOff and
use \verb.

5.2.2 Note#2
Any text on the same line that falls ”inside” the \KKcodeS and \KKcodeE boundaries is ignored,
while text ”outside” them is preserved. The following example will illustrate the behavior.

Input

1 Not ignored. \KKcodeS+ Ignored.

2 % Contents
3 Ignored. \KKcodeE Not ignored.

7

Output

Not ignored.
1 % Contents

Not ignored.

6 Color Mapping

6.1 Basic Behavior

This package provides color-mapping option. You can specify the color of the keyword-color,
comment-color, comment-token, etc. In order to set a colormap, you should use luacode* envi-
ronment as follows:

Input

1 \begin{luacode*}

2 KKLuaVerb.presets["<name-of-style>"] = {

3 map = {

4 <color1> = { "<token1>", "<token2>",... },

5 <color2> = { "<token1>", "<token2>",... },

6 ...

7 },

8

9 options = {

10 word_boundary = true or false,

11 word_components = "[<word-components>]",

12 comment_char = "<comment-token>",

13 comment_color = "<comment-color>",

14 escape_char = "<escape-token>",

15 delimiters = {

16 { start = '<starter1>', stop = '<ender1>', color = "<patial-color1>" },

17 { start = '<starter2>', stop = '<ender2>', color = "<patial-color2>" },

18 },

19 forced_tokens = {

20 ["<forced-token1>"] = "<color2>",

21 ["<forced-token2>"] = "<color2>",

22 }

23 }

8

24 }

25 \end{luacode*}

The “color” parameter here refers to those defined in the xcolor package.
You can set multiple presets, and can change or activate by \KKvUsePreset{<name-of-style>}

command.

6.1.1 word_boundary, word_components options
These two options are closely related to each other. In the argument of the \KKverb command
or inside of the \KKcodeS/E environment, the mapped keywords are colored as you specified.
However, if the string is included in the other words, you need to prevent the system provided
from wrongly color the string. For example, in the situation that \def command is mapped as a
keyword but \define is not, the part of \def in \define should not be colored.
For this purpose, I made a “word_boundary detector”. In advance, set the components of the
“word” like this:

1 word_components = "[A-Za-z0-9_]",

Then, activate the word_boundary detector:
1 word_boundary = true,

By all this, any characters or tokens except for "[A-Za-z0-9_]" works as a separater of the words
or tokens, and each keywords are properly colored.
By default, word_boundary are set as “true”, and word_components are set as "[A-Za-z0-9_]".

6.1.2 comment_char, comment_color, escape_char options
These options are provided in order to set comment character, comment color, and escape
character respectively.
If you set comment_char, the following texts in the same lina are colored as comment_color. But,
if you put the escape_char before the comment_char, the very token and the following texts are not
colored as comment_color.

6.1.3 delimiters, forced_token options
These options are provided for the purpose of setting delimiter token and the color of the texts
between the tokens. Additionally, you can set multiple forced_token. These are forced to be
colored as you specify, even they are between the delimiters.

9

6.2 Example
Input Setting

1 \begin{luacode*}

2 KKLuaVerb.presets["TeXStyle"] = {

3 map = {

4 DarkCyan = { "{", "}" },

5 OrangeRed = { "[", "]" },

6 DeepPink = { "(", ")" },

7 DarkGoldenrod = { "&", "$", "^", "_"},

8

9 CornflowerBlue = {

10 "\\documentclass", "\\usepackage", "\\begin", "\\end",

11 "\\section", "\\subsection", "\\chapter",

12 "\\makeatletter", "\\makeatother", "\\ExplSyntaxOn", "\\ExplSyntaxOff"

13 },

14

15 MediumPurple = {

16 "\\def", "\\edef", "\\gdef", "\\xdef",

17 "\\newcommand", "\\renewcommand", "\\providecommand",

18 "\\let", "\\setcopy", "\\long", "\\global"

19 },

20

21 Magenta = {

22 "\\if", "\\else", "\\fi", "\\ifx", "\\ifdefined",

23 "\\ifnum", "\\ifdim", "\\loop", "\\repeat", "\\noexpand"

24 },

25

26 IndianRed = {

27 "\\KKlvStart*", "\\KKlvEnd*"

28 }

29 },

30

31 options = {

32 word_boundary = true,

33 comment_char = "%",
34 comment_color = "ForestGreen",

35 escape_char = "\\",

10

36 delimiters = {

37 { start = "$", stop = "$", color = "SpringGreen3" },

38 { start = "\\[", stop = "\\]", color = "SpringGreen3" },

39 },

40 forced_tokens = {

41 ["{"] = "DarkCyan",

42 ["}"] = "DarkCyan",

43 },

44 }

45 }

46 \end{luacode*}

Input Actual Use

1 \KKvUsePreset{TeXStyle}

2

3 \KKcodeS+

4 \usepackage{KKluaverb}

5

6 \begin{document}

7 Hello, KKTeX!

8 \end{document}

9 \KKcodeE

10

11 \KKcodeS

12 { [\ (\% \$ # & _ ^) /] }
13 Inline mathmode: $a + b = \frac{x}{y}$

14 Display-style mathmode:

15 \[a + b = \frac{x}{y}\]

16 \KKcodeE

Output

1 \usepackage{KKluaverb}

2

3 \begin{document}

4 Hello, KKTeX!

5 \end{document}

11

{ [\ (\% \$ # & _ ^) /] }

Inline mathmode: $a + b = \frac{x}{y}$

Display-style mathmode:

\[a + b = \frac{x}{y}\]

7 Text Mapping

By using \KKvSetMap, you can replace a certain text in the argument of \KKverb and \KKcodeS/E

environment.

Input Actual Use

1 \KKvSetMap〈{!}{〉EXCLAMATION}

2 \KKvSetMap〈{?}{〉QUESTION}

3

4 \KKverb|Wait, you really change them!?|

5

6 \KKvSetMap{!}{!}

7 \KKvSetMap{?}{?}

8 \KKverb|Oh, how can I reset them!?|

Output

Wait, you really change them〈EXCLAMATION〉〈QUESTION〉
Oh, how can I reset them!?

Using this, you can visualize all spaces in the argument of \KKverb and \KKcodeS/E environment.
However, you have to use \KKvSpaceForce if you want to reset. By default, this package automat-
ically replaces any spaces to Unicode character U+00A0 (Non-breaking Space). Therefore, you
need to use the special command if you want to quit visualizing spaces.

Input Actual Use

1 \KKvSetMap{ }{<sp>}

2 \KKverb| Look! All spaces are visualized!! |

3

4 \KKvSpaceForce

5 \KKverb| Oh, spaces are no longer visualized. |

12

Output

<sp><sp>Look!<sp>All<sp>spaces<sp>are<sp>visualized!!<sp><sp>

 Oh, spaces are no longer visualized.

13

	Outline
	Acknowledgements / Credit
	Dependencies
	Basic Usage of Lua-enhanced black癥爠b
	Fundamental Behavior
	In Verbatim Environments
	Optional Usage
	Behavior in TOC, Index etc.

	Basic Usage of Lua-enhanced blacklstlisting
	Fundamental Behavior
	black䭋瘠LNChange

	Additional Description
	Note#1
	Note#2

	Color Mapping
	Basic Behavior
	blackword_boundary, word_components options
	blackcomment_char, comment_color, escape_char options
	blackdelimiters, forced_token options

	Example

	Text Mapping

