
paramcalc: compute parameters to fit condition

Miguel V. S. Frasson
(mvsfrasson@gmail.com)

2026, jan. 27

Abstract
Sometimes one wants to get font size or letter spacing so that text fits a desired length, or some
unit length so that a picture fits some desired size, for instance. This package implements

macros to compute such parameters to fit a condition.

1 The purpose of this package
Suppose that one wants to create a nice logo with two lines of same size, first line “AWESOME”
and second line “example of use for paramcalc”. We look for font size of first line, so that the
lines have the same width. This is the desired result:

AWESOME
example of use for paramcalc

Instead of setting font size by hand1 and visually trying to get the desired condition, we want
to compute such font size for line 1.

This can be acomplished with paramcalc with the following code (make sure you use
scalable fonts2):

\newcommand{\mytext}{\Large example of use for paramcalc}
\newlength{\lineIIwd}
\settowidth{\lineIIwd}{\mytext}

\newlength{\lineIwd}
\paramcalc{12}{50}{\lineIIwd}[\lineIwd]{

% compute \lineIwd as function of fontsize \x
\settowidth{\lineIwd}{\fontsize{\x}{\x}\selectfont \textls*{AWESOME}}

}

Showing the result.
\begin{center}

{\fontsize{\x}{\x}\selectfont \textls*{AWESOME}\par}
\mytext

\end{center}

It you use \x in the document, you get the computed value 29.26342205668603.
1As width is proportional to font size, one could also compute font size by proportion, measuring texts of both lines.
2Computer Modern are not scalable, but Latin Modern (package lmodern), EB Garamond (package ebgaramond)

and many others are.

1

2 Usage
To compute a desired parameter, the situation can be reduced to find a zero of a real function.
In the example above, we wanted that the length 𝑦(𝑥) of first line as function of its font size
𝑥 should match the length 𝑦0 of second line, so that we need to find the zero of the function
𝑓 (𝑥) = 𝑦(𝑥) − 𝑦0.

The computation is done by \paramcalc macro.

\paramcalc[⟨x macro⟩]{⟨x initial⟩}{⟨x final⟩}[⟨𝜀⟩]{⟨y desired⟩}[⟨y macro⟩]{⟨body⟩}\paramcalc

The optional ⟨x macro⟩ defaults to \x, the optional ⟨y macro⟩ defaults to \y and both should
be control sequences. ⟨y macro⟩ and ⟨y desited⟩ could be lengths, converted to numbers as pt.

⟨body⟩ should be code that computes ⟨y macro⟩ for an arbitrary value of ⟨x macro⟩, supposed
to expand to a decimal value. The result is stored in ⟨x macro⟩ after its computation. If its value
is in between ⟨x initial⟩ and ⟨x final⟩, convergence is ensured. Often3 the functions involved are
affine (for instance, a width is proportional a font size), and in this case convergence is achieved
after just one step.

The convergence is achieved when |⟨y macro⟩ − ⟨y desired⟩| < 𝜀. The value of 𝜀, where 𝜀
is given in optional arg ⟨epsilon⟩ and defaults to 0.05. If it doesn’t happen after a maximum
number of steps, an error is signaled. Then, probably de desired 𝑥 is outside initial interval.

There are situations where only integer values of 𝑥 are suitable, like in the optional parameter
n for \textls[⟨n⟩]{⟨text⟩}. In such cases, use \intparamcalc, with same arguments. The
only difference is that ⟨x macro⟩ only assume integer values, but ⟨y macro⟩ still are supposed to
assume real values.

\intparamcalc[⟨x macro⟩]{⟨x initial⟩}{⟨x final⟩}[⟨𝜀⟩]{⟨y desired⟩}[⟨y macro⟩]{⟨body⟩}\intparamcalc

Attention: The numerical method implemented in this package is not suitable when 𝑦

assumes (too) discrete values or isn’t a continuous function of 𝑥 (it its where real-valued) like
when 𝑦 counts lines, for instance.

2.1 Package options
• maxsteps = ⟨n⟩ : sets maximum number of steps before giving up. Defaults to 20.

• epsilon = ⟨epsilon⟩ : sets the convegence criterium 𝜀 to ⟨epsilon⟩. Defaults to 0.05.

3 Examples
Creating a logo for the book “História Geral do Brasil”, in three lines.

• The first two lines in font size 20pt of size;

• For the first line we compute letter spacing to fit size of 2nd line;

• For the third line, we compute font size, keeping same size.

HISTÓRIA
GERAL DO
BRASIL

3I could not figure out any real life example where the function was not affine.

2

This is achieved with the code:

\begin{center}
\fontsize{20}{22}\bfseries

% base length \lIIwd: line 2 with \textls* and \bfseries
\newlength{\lIIwd} \newlength{\auxwd}
\settowidth{\lIIwd}{\textls*{GERAL \,DO}}

% compute letter spacing \lIls for 1st line: body compute \auxwd
\intparamcalc[\lIls]{0}{200}{\lIIwd}[\auxwd]{

\settowidth{\auxwd}{\textls*[\lIls]{HISTÓRIA}}}

% compute font size \lIIIfs for 3rd line: body compute \auxwd
\paramcalc[\lIIIfs]{20}{50}{\lIIwd}[\auxwd]{

\settowidth{\auxwd}{\fontsize{\lIIIfs}{\lIIIfs}\selectfont \textls*{BRASIL}}}

% typesetting the logo
\textls*[\lIls]{HISTÓRIA} \\ \textls*{GERAL \,DO} \\
\fontsize{\lIIIfs}{\lIIIfs}\selectfont \textls*{BRASIL}

\end{center}

4 Numerical method implemented
To ensure convergense (with a root in [𝑎, 𝑏]), we implement Illinois algorithm4, an improvement
over False Position method (regula falsi):

Assuming that 𝑓 : 𝐼 → R is a continuous function, end-points 𝑎, 𝑏 ∈ 𝐼 , 𝑓 (𝑎) · 𝑓 (𝑏) < 0,
so 𝑓 has a root in [𝑎, 𝑏].

Let 𝑐 be the root of the secant line that connects (𝑎, 𝑓 (𝑎)) and (𝑏, 𝑓 (𝑏)).

𝑎

𝑏𝑐

so, by similarity of triangles,

Δ =
𝑏 − 𝑎

𝑓 (𝑏) − 𝑓 (𝑎) =
𝑏 − 𝑐

𝑓 (𝑏) =⇒ 𝑐 = 𝑏 − 𝑓 (𝑏)Δ. (1)

The Illinois algorithm for False Position puts the following iteraction:

(𝑎, 𝑓 (𝑎)) =
{(
𝑐, 𝑓 (𝑐)

)
, if 𝑓 (𝑏) 𝑓 (𝑐) < 0,(

𝑎,
𝑓 (𝑎)
2

)
, otherwise

(2)

(𝑏, 𝑓 (𝑏)) = (𝑐, 𝑓 (𝑐)) (3)
4Dowell, M., Jarratt, P. A modified regula falsi method for computing the root of an equation. BIT Numerical

mathematics 11, 168–174 (1971). https://doi.org/10.1007/BF01934364

3

https://doi.org/10.1007/BF01934364

5 Code
Identidication of the package.

1\NeedsTeXFormat{LaTeX2e}
2\ProvidesPackage{paramcalc}[2026/01/27 v1.0 compute params to fit conditions]

We use LATEX3 codebase.
3\ExplSyntaxOn

There are two versions of the solving macros: real roots are admitted or only integer roots
(like parameters for \textls[\x]{text }). We do a single implementation and the cases are
regulated by a boolen.

4\bool_new:N \g_PARC_int_bool

The iteraction will end when f(c) < 𝜀.
Floating point variables for 𝑎, 𝑏, 𝑓 (𝑎), 𝑓 (𝑏), 𝑐, 𝑓 (𝑐) and Δ:

5\fp_new:N \l_PARC_a_fp
6\fp_new:N \l_PARC_b_fp
7\fp_new:N \l_PARC_fa_fp
8\fp_new:N \l_PARC_fb_fp
9\fp_new:N \l_PARC_x_fp

10\fp_new:N \l_PARC_fx_fp
11\fp_new:N \l_PARC_delta_fp

Also, a counter for steps taken, in case of divergence.
12\int_new:N \l_PARC_steps_int

Defining package option for maximum number of steps.
13\int_new:N \l_PARC_maxsteps_int
14\int_set:Nn \l_PARC_maxsteps_int { 20 }
15\keys_define:nn {paramcalc} { maxsteps .int_set:N = \l_PARC_maxsteps_int }

Defining package option for default epsilon (stop criterium).
16\fp_new:N \l_PARC_epsilon_fp
17\fp_set:Nn \l_PARC_epsilon_fp { 0.05 }
18\keys_define:nn {paramcalc} { epsilon .fp_set:N = \l_PARC_epsilon_fp }

Passing options to package.
19\DeclareOption*{ \keys_set:ne { paramcalc } { \CurrentOption } }
20\ProcessOptions

The arguments of \PARC_paramcalc : NnnnnNn are\PARC_paramcalc:NnnnnNn
#1 = macro that holds value for 𝑥 (default to \x later on)
#2 = 𝑎

#3 = 𝑏

#4 = 𝜀

#5 = 𝑦0
#6 = macro that stores computed 𝑦(𝑥) (default to \y later on)
#7 = body of code that computes 𝑦(𝑥) and stores value in #6.
21\cs_new:Nn \PARC_paramcalc:NnnnnNn
22{

Store 𝑎 from #2 in \l_PARC_a_fp and set #1 as the decimal representation of 𝑎, taking care if
integer values must be used.
23 \fp_set:Nn \l_PARC_a_fp { #2 }
24 \bool_if:NTF \g_PARC_int_bool

4

25 { \tl_set:Ne #1 { \fp_to_int:n { #2 } } }
26 { \tl_set:Ne #1 { \fp_to_decimal:n { #2 } } }

Call body to get 𝑦(𝑥) in #6
27 #7

Save 𝑓 (𝑥) = 𝑦(𝑥) − 𝑦0 in \l_PARC_fa_fp
28 \fp_set:Nn \l_PARC_fa_fp { #6 - (#5) }

Do as before, now for 𝑏 stored in #3:
29 \fp_set:Nn \l_PARC_b_fp { #3 }
30 \bool_if:NTF \g_PARC_int_bool
31 { \tl_set:Ne #1 { \fp_to_int:n { #3 } } }
32 { \tl_set:Ne #1 { \fp_to_decimal:n { #3 } } }
33 #7
34 \fp_set:Nn \l_PARC_fb_fp { #6 - (#5) }

In many situations, the function 𝑓 (𝑥) is affine and the secant method converges after the
first iteration, so it really doesn’t matter if 𝑓 (𝑎) 𝑓 (𝑏) < 0, so we trigger just a warning if signs of
𝑓 (𝑎) and 𝑓 (𝑏) are the same.

35 \fp_compare:nNnT { (\l_PARC_fa_fp) * (\l_PARC_fb_fp) } > { 0 }
36 {
37 \msg_warning:nn {paramcalc}
38 {
39 The ~values ~of ~\string#6 ~are
40 ~{\fp_to_decimal:N \l_PARC_fa_fp} ~and
41 ~{\fp_to_decimal:N \l_PARC_fa_fp}, ~both
42 \fp_compare:nNnTF { \l_PARC_fa_fp } > 0 { ~above } { ~below }
43 ~{\fp_to_decimal:n {#5}} ~so ~convergence ~is ~not ~ensured.\\
44 Try ~to ~set ~initial ~values ~that ~surround ~the ~root.
45 }
46 }

Now the loop. Last iteraction is supposed to be stored in \l_PARC_fb_fp. Stop condition
is f(b) < 𝜀, with 𝜀 stored in #4.
47 \fp_while_do:nNnn { abs(\l_PARC_fb_fp) } > { #4 }
48 {

Computing Δ and 𝑐 as in (1).
49 \fp_set:Nn \l_PARC_delta_fp
50 { (\l_PARC_b_fp - \l_PARC_a_fp) / (\l_PARC_fb_fp - \l_PARC_fa_fp) }
51 \fp_set:Nn \l_PARC_c_fp
52 { \l_PARC_b_fp - (\l_PARC_fb_fp) * (\l_PARC_delta_fp) }

Compute 𝑓 (𝑐) and store it in \l_PARC_fc_fp.
53 \bool_if:NTF \g_PARC_int_bool
54 { \tl_set:Ne #1 { \fp_to_int:N \l_PARC_c_fp } }
55 { \tl_set:Ne #1 { \fp_to_decimal:N \l_PARC_c_fp } }
56 #7
57 \fp_set:Nn \l_PARC_fc_fp { #6 - (#5) }

Now implement Illinois iteraction from (2)
58 \fp_compare:nNnTF { (\l_PARC_fc_fp) * (\l_PARC_fc_fp) } < { 0 }
59 {
60 \fp_set:Nn \l_PARC_a_fp { \l_PARC_b_fp }
61 \fp_set:Nn \l_PARC_fa_fp { \l_PARC_fb_fp }

5

62 }
63 {
64 \fp_set:Nn \l_PARC_fa_fp { 0.5 * (\l_PARC_fa_fp) }
65 }

and (3).
66 \fp_set:Nn \l_PARC_b_fp { \l_PARC_c_fp }
67 \fp_set:Nn \l_PARC_fb_fp { \l_PARC_fc_fp }
68 }

Handling possible divergence if 𝑓 (𝑎) 𝑓 (𝑏) > 0. If it doesn’t converge after\l_PARC_maxsteps_int
steps, an error is signaled.
69 \int_incr:N \l_PARC_steps_int
70 \int_compare:nNnT { \l_PARC_steps_int } > { \l_PARC_maxsteps_int }
71 {
72 \msg_error:nn {paramcalc}
73 {
74 Failed ~to ~converge ~after ~\int_use:N \l_PARC_steps_int ~steps.\\
75 Try ~to ~narrow ~initial ~values ~around ~the ~zero.
76 }
77 }
78}

Recall that the user access the computed value from #1.
Now we define user functions that set \g_PARC_int_bool and call previous function.
Define \paramcalc.

79\NewDocumentCommand{\paramcalc}{ O{\x} m m O{0.05} m O{\y} m}
80{
81 \bool_set:Nn \g_PARC_int_bool { \c_false_bool }
82 \PARC_paramcalc:NnnnnNn #1 { #2 } { #3 } { #4 } { #5 } #6 { #7 }
83}
84%
85% Define \texttt{\string\intparamcalc}.
86% \begin{macrocode}
87\NewDocumentCommand{\intparamcalc}{ O{\x} m m O{0.05} m O{\y} m}
88{
89 \bool_set:Nn \g_PARC_int_bool { \c_true_bool }
90 \PARC_paramcalc:NnnnnNn #1 { #2 } { #3 } { #4 } { #5 } #6 { #7 }
91}

Finish LATEX3 syntax.
92\ExplSyntaxOff

6

	1 The purpose of this package
	2 Usage
	2.1 Package options

	3 Examples
	4 Numerical method implemented
	5 Code

