IXTEX’s socket management™

Frank Mittelbach
October 31, 2025

Abstract

This code implements sockets which are places in the code into which predeclared
chunks of code (plugs) can be placed. Both the sockets and the plugs are “named”
and each socket is assigned exactly one plug at any given time.

Contents

-

1 Introduction

2 Configuration of the transformation process
2.1 The template mechanism
2.2 The hook mechanism L ..
2.3 The socket mechanism
2.3.1 Exampleso
2.3.2 Details and semantics e
2.3.3 Command syntax L
2.3.4 Rationale for error handling

O© Ok WwNNN

p—t
=}

Index

1 Introduction

A T¥TEX source file is transformed into a typeset document by executing code for each
command or environment in the document source. Through various steps this code
transforms the input and eventually generates typeset output appearing in a “galley”
from which individual pages are cut off in an asynchronous way. This page generating
process is normally not directly associated with commands in the input! but is triggered
whenever the galley has received enough material to form another page (giving current
settings).

As part of this transformation input data may get stored in some form and later
reused, for example, as part of the output routine processing.

*This module has version v0.9¢ dated 2024/12/27, © WTEX Project.
I Excepts for directives such as \newpage.

2 Configuration of the transformation process

There are three different major methods offered by IZTEX to configure the transformation
process:

e through the template mechanism,
e through the hook mechanism, or
e through sockets and plugs.

They offer different possibilities (with different features and limitations) and are intended
for specific use cases, though it is possible to combine them.

2.1 The template mechanism

The template mechanism is intended for more complex document-level elements (e.g.,
headings such as \section or environments like itemize). The template code implements
the overall processing logic for such an element and offers a set of parameters to influence
the final result.

The document element is then implemented by (a) selecting a suitable template
(there may be more than one available for the kind of document element) and (b) by
setting its parameters to desired values. This then forms a so-called instance which is
executed when the document element is found in the source.

By altering the parameter values (in a document class or in the document preamble)
or, if more drastic layout changes are desired, by selecting a different template and
then adjusting its parameters, a wide variety of layouts can be realized through simple
configuration setups without the need to develop new code.

The target audience of this method are therefore document class developers or users
who wish to alter an existing layout (implemented by a document class) in certain (minor)
ways.

The template mechanism is currently documented as part of the xtemplate package
and one more elaborate implementation can be found as part of the latex-1ab code for
lists (to be documented further).

2.2 The hook mechanism

Hooks are places in the kernel code (or in packages) that offer packages the possibility to
inject additional code at specific points in the processing in a controlled way without the
need to replace the existing code block (and thereby overwriting modifications/extensions
made by other packages). The target audience is therefore mainly package developers,
even though some hooks can be useful for document authors.

Obviously, what can reasonably be added into a hook depends on the individual hook
(hopefully documented as part of the hook documentation), but in general the idea be-
hind hooks is that more than one package could add code into the hook at the same time.
Perhaps the most famous hook (that ITEX had for a very long time) is begindocument
into which many packages add code to through \AtBeginDocument{(code)} (which is
nowadays implemented as a shorthand for \AddToHook{begindocument}{(code)}). To
resolve possible conflicts between injections by different packages there is a rule mech-
anism by which code chunks in a hook can be ordered in a certain way and by which
incompatible packages can be detected if a resolution is impossible.

In contrast to template code, there is no standard configuration method through
parameters for hooks, i.e., the code added to a hook “is” the configuration. If it wants
to provide for configuration through parameters it has to also provide its own method to
set such parameters in some way. However, in that case it is likely that using a hook is
not the right approach and the developer better calls a template instance instead which
then offers configuration through a key/value interface.

In most cases, hooks do not take any arguments as input. Instead, the data that
they can (and are allowed to) access depends on the surrounding context.

For example, the various hooks available during the page shipout process in NTEX’s
output routine can (and have to) access the accumulated page material stored in a box
named \ShipoutBox. This way, code added to, say, the shipout/before hook could
access the page content, alter it, and then write it back into \ShipoutBox and any other
code added to this hook could then operate on the modified content. Of course, for such
a scheme to work the code prior to executing the hook would need to setup up data in
appropriate places and the hook documentation would need to document what kind of
storage can be accessed (and possibly altered) by the hook.

There are also hooks that take arguments (typically portions of document data) and
in that case the hook code can access these arguments through #1, #2, etc.

The hook mechanism is documented in 1thooks-doc.pdf.

2.3 The socket mechanism

In some cases there is code that implements a certain programming logic (for example,
combining footnotes, floats, and the text for the current page to be shipped out) and
if this logic should change (e.g., footnotes to be placed above bottom floats instead of
below) then this whole code block needs to be replaced with different code.

In theory, this could be implemented with templates, i.e., the code simply calls some
instance that implements the logic and that instance is altered by selecting a different
templates and/or adjusting their parameters. However, in many cases customization
through parameters is overkill in such a case (or otherwise awkward, because parameter-
ization is better done on a higher level instead of individually for small blocks of code)
and using the template mechanism just to replace one block of code with a different one
results in a fairly high performance hit. It is therefore usually not a good choice.

In theory, it would also be possible to use a hook, but again that is basically a misuse
of the concept, because in this use case there should never be more than one block of
code inside the hook; thus, to alter the processing logic one would need to set up rules
that replace code rather than (as intended) execute all code added to the hook.

For this reason IXTEX now offers a third mechanism: “sockets” into which one can
place exactly one code block — a “plug”.

In a nutshell: instead of having a fixed code block somewhere as part of the code,
implementing a certain programming logic there is a reference to a named socket at this
point. This is done by first declaring the named socket with:

\NewSocket{(socket-name) H {number-of-inputs)}

This is then referenced at the point where the replaceable code block should be executed
with:

\UseSocket{(socket-name)}

or, if the socket should take a number of inputs (additional arguments beside the name)
with

\UseSocket{(socket-name)}{{args)}. .. {(arg(nunber-ot-inputs))+

In addition, several code blocks (a.k.a. plugs) implementing different logic for this
socket are set up, each with a declaration of the form:

\NewSocketPlug{(socket-name)}{(socket-plug-name){{code)+
Finally, one of them is assigned to the socket:
\AssignSocketPlug{(socket-name)}{(socket-plug-name)}

If the programming logic should change, then all that is necessary is to make a new as-
signment with \AssignSocketPlug to a different {(socket-plug-name)}. This assignment
obeys scope so that an environment can alter a socket without the need to restore the
previous setting manually.

If the socket takes inputs, then those need to be provided to \UseSocket and in that
case they can be referenced in the {(code) argument of \NewSocketPlug with #1, #2, etc.

In most cases a named socket is used only in a single place, but there is, of course,
nothing wrong with using it in several places, as long as the code in all places is supposed
to change in the same way.

2.3.1 Examples
We start by declaring a new socket named foo that expects two inputs:

\NewSocket{foo}{2}

Such a declaration has do be unique across the whole ITEX run. Thus, if another
package attempts to use the same name (regardless of the number of inputs) it will
generate an error:

\NewSocket{foo}{2}
\NewSocket{foo}{1}

Both declarations would therefore produce:
! LaTeX socket Error: Socket ’foo’ already declared!

You also get an error if you attempt to declare some socket plug and the socket name
is not yet declared, e.g.,

\NewSocketPlug{baz}{undeclared}{some code}
generates
! LaTeX socket Error: Socket ’baz’ undeclared!
Setting up plugs for the socket is done like this:

\NewSocketPlug{foo}{plug-A}

{\begin{quote}\itshape foo-A: #1!#2\end{quotel}}
\NewSocketPlug{foo}{plug-B}

{\begin{quote}\sffamily foo-B: #22\end{quotel}}

This will set up the plugs plug-A and plug-B for this socket.
We still have to assign one or the other to the socket, thus without doing that the
line

\UseSocket{foo}{hello}{world}

produces nothing because the default plug for sockets with 2 inputs is noop (which grabs
the additional arguments and throws them away).>
So let’s do the assignment

\AssignSocketPlug{foo}{plug-A}
and then
\UseSocket{foo}{hello}{world}
will properly typeset
foo-A: hellolworld
and after
\AssignSocketPlug{foo}{plug-B}
and another call to
\UseSocket{foo}{hello}{world}
we get
foo-B: world?
If we attempt to assign a plug that was not defined, e.g.,
\AssignSocketPlug{foo}{plug-C}
then we get an error during the assignment
! LaTeX socket Error: Plug ’plug-C’ for socket ’foo’ undeclared!

and the previous assignment remains in place.

To see what is known about a socket and its plugs you can use \ShowSocket or
\LogSocket which displays information similar to this on the terminal or in the transcript
file:

Socket foo:

number of inputs = 2

available plugs = noop, plug-A, plug-B

current plug = plug-B

definition = \long macro:#1#2->\begin {quote}\sffamily
foo-B: #2\textsuperscript {2}\end {quote}

21f socket foo would have been a socket with one input, then the default plug would be identity, in
which case the socket input would remain without braces and gets typeset!

2.3.2 Details and semantics

In this section we collect some normative statements.

e From a functional point of view sockets are like simple TEX macros, i.e., they
expect 0 to 9 mandatory arguments (the socket inputs) and get replaced by their
“expansion”

e A socket is “named” and the name consists of ASCII letters [a-z], [A-Z], [0-9],
[-/@] only

e Socket names have to be unique, i.e., there can be only one socket named (name).
This is ensured by declaring each socket with \NewSocket.

However, there is no requirement that sockets and hook names have to be different.
In fact, if a certain action that could otherwise be specified as hook code has
to be executed always last (or first) one could ensure this by placing a socket
(single action) after a hook (or vice versa) and using the same name to indicate the
relationship, e.g.,

\UseHook{foo} % different package can add code here
\UseSocket{foo} % only one package can assign a plug

This avoids the need to order the hook code to ensure that something is always
last.

e Best practice naming conventions are ... to be documented

e A socket has documented inputs which are

— the positional arguments (if any) with a description of what they contain when
used

— implicit data (registers and other 2e/expl3 data stores) that the socket is
allowed to make use of, with a documented description of what they contain
(if relevant for the task at hand—mno need to describe the whole IATEX universe)

— information about the state of the TEX engine (again when relevant), e.g. is
called in mmode or vmode or in the output routine or ...

— ... anything missing?
o A socket has documented results/outputs which can be

— what kind of data it should write to the current list (if that is part of its task)

— what kind of registers and other 2e/expl3 data stores it should modify and in
what way

what kind of state changes it should do (if any)
— ... anything else?
o At any time a socket has one block of code (a plug :-)) associated with it. Such

code is itself named and the association is done by linking the socket name to the
code name (putting a plug into the socket).

e The name of a plug consists of ASCII letters [a-z], [A-Z], [0-9], [-/@] only.

\NewSocket
\socket_new:nn

e Socket plug names have to be unique within on a per socket basis, but it is perfectly
allowed (and sensible in some cases) to use the same plug name with different sockets
(where based on the sockets’ purposes, different actions may be associated with the
plug name). For example noop is a plug name declared for every socket, yet it
action “grab the socket inputs and throw them away” obviously differs depending
on how many inputs the socket has.

o When declaring a plug it is stated for which socket it is meant (i.e., its code can
only be used with that socket). This means that the same plug name can be used
with different sockets referring to different code in each case.

e Configuration of a socket can only be done by linking different code to it. Never-
theless the code linked to it can provide its own means of configuration (but this is
outside of the spec).

o Technically execution of a socket (\UseSocket) involves

— doing any house keeping (like writing debugging info, ...);

— looking up the current code association (what plug is in the socket);

executing this code which will pick up the mandatory arguments (happens at
this point, not before), i.e., it is like calling a csname defined with

\def\foo#1#2...{...#1...#2...}

— do some further house keeping (if needed).

o A socket is typically only used in one place in code, but this is not a requirement,
i.e., if the same operation with the same inputs need to be carried out in several
places the same named socket can be used.

2.3.3 Command syntax

We give both the ITEX 2¢ and the L3 programming layer command names.

\NewSocket {(socket-name)} {(number-of-inputs)}
\socket_new:nn {(socket-name)} {(number-of-inputs)}

Declares a new socket with name (socket-name) having (number-of-inputs) inputs.
There is automatically a plug noop declared for it, which does nothing, i.e., it gobbles
the socket inputs (if any). This is made the default plug except for sockets with one
input which additionally define the plug identity and assign that as their default.

This identity plug simply returns the socket input without its outer braces. The
use case for this plug are situations like this:

\UseSocket{tagsupport/footnote}{{code)}

If tagging is not active and the socket contains the plug identity then this returns
(code) without the outer braces and to activate tagging all that is necessary is to change
the plug to say tagpdf so that it surrounds (code) by some tagging magic. This is the
most common use case for sockets with one input, which is why they have this special
default.

The socket documentation should describe its purpose, its inputs and the expected
results as discussed above.

The declaration is only allowed at top-level, i.e., not inside a group.

\NewSocketPlug
\socket_new_plug:nnn
\socket_set_plug:nnn

\AssignSocketPlug
\socket_assign_plug:nn

\UseSocket
\socket_use:nw
\socket_use:n
\socket_use:nn
\socket_use:nnn
\socket_use:nnnn

\NewSocketPlug {(socket-name)} {(socket-plug-name)} {{code)}
\socket_new_plug:nnn {(socket-name)} {(socket-plug-name)} {(code)}
\socket_set_plug:nnn {(socket-name)} {(socket-plug-name)} {{code)}

Declares a new plug for socket (socket-name) that runs (code) when executing. It
complains if the plug was already declared previously.

The form \socket_set_plug:nnn changes an existing plug. As this should normally
not be necessary, we currently have only an L3 layer name for the few cases it might be
useful.

The declarations can be made inside a group and obey scope, i.e., they vanish if the
group ends.

\AssignSocketPlug {(socket-name)} {(socket-plug-name)}
\socket_assign_plug:nn {(socket-name)} {(socket-plug-name)}

Assigns the plug (socket-plug-name) to the socket (socket-name). It errors if either
socket or plug is not defined.
The assignment is local, i.e., it obeys scope.

\UseSocket {(socket-name)}
\socket_use:nnn {(socket-name)} {(socket-argi)} {(socket-arg>)}

Executes the socket (socket-name) by retrieving the (code) of the current plug assigned
to the socket. This is the only command that would appear inside macro code in packages.
For performance reasons there is no explicit check that the socket was declared!

The different L3 programming layer commands are really doing the same thing: they
grab as many arguments as defined as inputs for the socket and then pass them to the
plug. The different names are only there to make the code more readable, i.e., to indicate
how many arguments are grabbed in total (note that no runtime check is made to verify
that this is actually true). We only provide them for sockets with up to 3 inputs (most
likely those with zero or one input would have been sufficient). If you happen to have a
socket with more inputs, use \socket_use:nw.

\socket_use_expandable:nw * \socket_use_expandable:n {(socket-name)}

\socket_use_expandable:n *

\ShowSocket
\LogSocket
\socket_show:n
\socket_log:n

Fully expandable variant of \socket_use:n. This can be used in macro code to retrieve
code from sockets which need to appear in an expandable context.

This usually requires the plug to only contain expandable code and should therefore
only be used for sockets which are clearly documented to be used in an expandable
context. This command does not print any debugging info when \DebugSocketsOn is
active and should therefore be avoided whenever possible.

For performance reasons there is no explicit check that the socket was declared!

\ShowSocket {(socket-name)}
\socket_show:n {(socket-name)}

Displays information about the socket (socket-name) and its state then stops and waits
for further instructions — at the moment some what rudimentary.

\LogSocket and \socket_log:n only differ in that they don’t stop.

It is sometimes necessary/helpful to know if a particular socket or plug exists (or is
assigned to a certain socket) and based on that take different actions.

\IfSocketExistsTF * \IfSocketExistsTF {(socket-name)} {(true code)} {(false code)}

\socket_if _exist:alF * 1o, ket (socket-name) exists then execute (true code) otherwise (false code). Vari-

ants with only T or F are also available.

\IfSocketPlugExistsTF * \IfSocketPlugExistsTF {(socket-name)} {(plug-name)}
\socket_if_plug_exist:nnTF * {(true code)} {(false code)}

If plug (plug-name) for socket (socket-name) exists then execute (true code) otherwise
(false code). Variants with only T or F are also available.

\IfSocketPlugAssignedTF * \IfSocketPlugAssignedTF {(socket-name)} {(plug-name)}
\socket_if_plug_assigned:nnTF {(true code)} {(false code)}

If plug (plug-name) is assigned to socket (socket-name) then execute (true code)
otherwise (false code). Variants with only T or F are also available.

\DebugSocketsOn \DebugSocketsOn ... \DebugSocketsOff
\DebugSockets0ff

\socket_debug_on:
\socket_debug_off:

Turns debugging of sockets on or off.

2.3.4 Rationale for error handling

The errors during the declarations are produced to help with typos—after all, such dec-
larations might be part of a document preamble (not that likely, but possible). However,
\UseSocket is not doing much checking, e.g.,

\UseSocket{mispelled-socket}{hello}{world}

will generate a rather low-level error and then typesets “helloworld” because there is no
dedicated runtime check if mispelled-socket is a known socket.

The reason is that if the misspelling is in the code, then this is a programming error
in the package and for speed reasons IXTEX does not repeately make runtime checks for
coding errors unless they can or are likely to be user introduced.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers

underlined point to the definition, all others indicate the places where it is used.

A

\AddToHook 2

\AssignSocketPlug 8

\AtBeginDocument 2
D

\DebugSocketsOff 9

\DebugSocketsOn 8
I

\IfSocketExistsTF 9

\IfSocketPlugAssignedTF 9

\IfSocketPlugExistsTF 9
L

\LogSocket 5
N

\newpage 1

\NewSocket 6

\NewSocketPlug 8
S

\ShowSocket

10

socket commands:
\socket_assign_plug:nn
\socket_debug_off:
\socket_debug_on:
\socket_if_exist:nTF
\socket_if_plug_assigned:nnTF
\socket_if_plug_exist:nnTF
\socket_log:n
\socket_new:nn
\socket_new_plug:nnn
\socket_set_plug:nnn
\socket_show:n
\socket_use:
\socket_use:
\socket_use:
\socket_use:
\socket_use:nw
\socket_use_expandable:n
\socket_use_expandable:nw

	Contents
	1 Introduction
	2 Configuration of the transformation process
	2.1 The template mechanism
	2.2 The hook mechanism
	2.3 The socket mechanism
	2.3.1 Examples
	2.3.2 Details and semantics
	2.3.3 Command syntax
	2.3.4 Rationale for error handling

	Index
	A
	D
	I
	L
	N
	S
	U

